
WHITE PAPERWHITE PAPER

Using Splunk and JA3/s hashes to detect malicious 
activity on critical servers

By Marcus LaFerrera and Ryan Kovar

Detecting Supply Chain Attacks



2Detecting Supply Chain Attacks

WHITE PAPER

Executive Summary
Attacks like SolarWinds1 have shown that organizations 

have difficulty detecting when their internal appliances 

begin communicating to new external (possibly 

malicious) hosts. This lack of visibility contributes to 

the dreaded “supply chain compromise.” This paper 

provides a method for assisting with that problem 

by using network data, statistics, and JA3/JA3s2 

hashes powered by Zeek3 and Splunk. Our primary 

goal throughout this research was to provide network 

defenders an added advantage in detecting malicious 

activity that would otherwise go undetected. 

In this paper, we will go over a handful of methods that 

can be used to help detect malicious activity on critical 

servers. The primary audience of this white paper is 

for technical practitioners but CISOs and leaders will 

find value in the introductions and conclusions. We 

will explore time tested queries, such as identifying 

first seen and rarest data points. Additionally, we will 

walk through using anomaly detection techniques and 

identifying potentially malicious processes. In most 

cases, the findings we present will be most useful 

for network defenders looking for novel methods 

and techniques to add to their supply chain attack 

detection toolbox.

None of the findings in this paper will prove to be 

a silver bullet in detecting software supply chain 

compromises. Still, it will help increase the speed of 

detection and thus increase the cost of adversarial 

operations (when a fancy bear chases you, you don’t 

have to be the fastest, just faster than your peers). By 

using commonly found and easily configured tools like 

Zeek combined with queries that have a low barrier to 

entry, we hope that security professionals, from junior 

SOC analysts to grizzled threat hunters, will find quick 

value. In essence, we sought to drastically reduce the 

size of the proverbial haystack to minimize the effort 

required to find the ever-elusive needle.

Introduction
Many software products are designed with so-called 

"phone home" features to support automatic updates, 

content subscriptions, or data upload. These same 

products are often deployed in privileged locations 

within the customers' cloud and on-prem environments. 

For example, Solarwinds Orion is usually granted 

carte blanche from a network perspective to support 

its primary use case: network monitoring. Likewise, 

Codecov, a popular code coverage tool, is embedded 

into continuous integration pipelines with unfettered 

access to source code, passwords, API keys, certificate 

signing keys, etc. It is not a standard practice for 

software developers to publish lists of IP addresses, 

domain names, or certificates representing legitimate 

destinations for phone home traffic. While some 

vendors provide such information, it is just as common 

for customers to need to press for it, and the data 

itself often changes. Attackers have recognized this 

combination of factors, and they are actively exploiting 

it. In this type of attack, the adversary infiltrates the 

developers' systems and modifies their product to 

redirect customers' sensitive data to a different location 

under the guise of legitimate "phone home" functionality.

Vendors are responsible for protecting their systems 

that comprise the software supply chain, but what 

can end customers do to detect malicious phone 

home activity? Experts often advise organizations to 

create baselines of regular network activity and then 

alert when deviations are observed. This is easier said 

than done. IP addresses often change and can be re-

allocated within minutes, often to different customers.

A potential solution to this problem would be to 

leverage a higher fidelity data point to detect 

anomalous activity. At the onset of our research, we 

purposefully defined very narrow goals and limitations 

to ensure our results were usable for most readers with 

little to no configuration or infrastructure modifications. 

In short, we sought to enable network defenders today, 

rather than tomorrow when it may be too late. One 

higher fidelity data point that is commonly collected 

and widely supported are JA3 and JA3s hashes. 

Collectively, we will refer to them as JA3/s. This paper 

will leverage JA3/s hashes as this higher fidelity data 

point and showcase core Splunk capabilities to bring 

anomalous activity close to the forefront.

1. https://www.fireeye.com/blog/threat-research/2020/12/evasive-
attacker-leverages-solarwinds-supply-chain-compromises-with-
sunburst-backdoor.html

2. https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-
ja3s-24736285596

3. https://zeek.org/



3Detecting Supply Chain Attacks

WHITE PAPER

What is JA3/s?
JA34 is an open-source methodology that allows for 

creating an MD5 hash of specific values found in the 

SSL/TLS handshake process. Key attributes from the 

client's handshake request are extracted from the 

session, concatenated, then hashed with the MD5 

algorithm. Specifically, the attributes extracted from 

the client-side of the session are:

SSLVersion,Cipher,SSLExtension,EllipticCurve, 

EllipticCurvePointFormat

By joining these values and then hashing the result, one 

can generate a consistent hash of specific clients and 

the libraries/binary making the request. For example, 

using this methodology on a session captured from a 

Trickbot compromise, the Trickbot binary’s JA3 hash 

was 6734f37431670b3ab4292b8f60f29984. This 

hash would be consistent across all SSL/TLS sessions 

originating from that binary, regardless of source and 

destination IP address. While changing IP addresses 

and domain names is relatively easy for adversaries, 

modifying their malware to use different SSL/TLS 

libraries is not. In this way, JA3 monitoring increases 

the overall cost for the adversary to hide the network 

connectivity.

Additionally, there is a similar methodology for 

calculating the JA3 hash of a server session. This 

is aptly named JA3s. The process is identical to 

generating a JA3 hash; however, the key attributes 

extracted from the server's session are slightly 

different. This is because servers may respond 

differently, depending on the request sent by the 

client. The details extracted from the server-side of the 

session are:

SSLVersion,Cipher,SSLExtension

Both JA3 and JA3s are easily obtained from network 

traffic using various tools. For the purpose of this 

research, the tool leveraged for hash generation has 

been limited to Zeek.

Detections
As part of this research, we've developed several 

methodologies to detect abnormal activity. Our goal 

was to ensure the developed queries are simple to 

leverage with little to no required components outside 

Splunk Enterprise. As a result, there are several caveats 

and limitations that should be highlighted.

Caveats and Limitations 
There are no silver bullets in detecting supply chain 

attacks, nor in detecting malicious activity in general. 

Our goal has always been to help bring anomalous 

activity as close to the forefront as possible with the 

available tools. In our testing using real-world enterprise 

data5, along with data generated6 from our testing 

environments, the results showed it is highly probable 

anomalous activity can be detected via abnormal JA3/s 

hashes. However, your mileage may vary depending 

on many factors. In all likelihood, an allow list will 

be required to limit the number of perceived false 

positives. Because this research focuses on using 

JA3/s hashes to detect anomalous activity, none of this 

research will be effective against network connectivity 

that is not encrypted over SSL/TLS.

Additionally, a network defender knowing their network 

will ensure these methodologies target the correct 

internal network segments. The queries are designed to 

limit the analysis to just internal hosts that are making 

outbound connections. None of the concepts presented 

in this paper will work effectively against internal source 

hosts used for general web browsing or hosts that 

routinely reach out to a multitude of external services 

via SSL/TLS sessions. As such, all queries should be 

restricted to just the internal hosts or netblocks that 

have limited outbound connectivity as a client.

SSL/TLS interceptions or inspection will break all of the 

methodologies presented here. This is because SSL/TLS 

interception will show different characteristics than the 

actual external server to the client making the request. 

As such, JA3/s hashes will be potentially unusable for 

detecting anomalous activity. This has been called (quite 

annoyingly to the author) by my colleagues the LaFerrera 

Paradox, as in where a defender is advanced enough 

to know they cannot detect Supply Chain issues but, 

as such, have put in mitigations that prevent common 

methods of detection.

4. https://github.com/salesforce/ja3

5. Several Splunk customers were very generous in helping generate these 
queries using real-world data. Without their help, our research would 
have been far more difficult.

6. https://github.com/mlaferrera/SEC1745/code



4Detecting Supply Chain Attacks

WHITE PAPER

Detecting Anomalous Activity
Throughout this research, we took many approaches to develop detections. From more traditional techniques such 

as first seen or rarest to more advanced strategies such as leveraging Splunk Enterprise's anomalydetection7 

command, which is an SPL command that uses frequency analysis to detect unlikely(anomalous) values in categorical 

fields such as JA3s hashes, and creating a similar approach using lookup8 and SPL9. As previously mentioned, in most 

cases, an allow list will be required to ensure expected network traffic is not included in the results. 

Queries
We focused on simple methodologies that the large majority of network defenders would be able to immediately leverage 

with minimal experience or modifications. We have also focused on query types that have been proven effective with a 

wide variety of data sources. None of the queries should be considered the silver bullet to detecting malicious activity. In 

our experience, however, starting with simple but effective solutions is the best way to help solve the problems of now.

All of the following queries have been used to identify potential abnormal network traffic and have been proven 

effective, with the aforementioned limitations in mind. In all scenarios, the queries will need to be modified to reflect 

your specific network addresses. The most up-to-date version of this research and the below queries can be found 

in the GitHub repository10. Each type of query is explained and then demonstrated using Splunk.

First Seen11

Detecting abnormal activity via a first seen query proved helpful when the analyst was familiar with network activity 

and leveraged an allow list. Additionally, the results are temporal, so the results can vary widely based on the timeframe 

specified. If the time window is too wide or narrow, potential malicious abnormal activity may be missed or blended 

with legitimate traffic. In many cases during our research, a time window of 7 days yielded the best results for finding 

the targeted malicious activity within the top 20 results. Finally, although not seen below, accuracy can be improved if 

an allow list of the most common JA3s hashes and/or server_name is added to remove known entities.

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| stats earliest(_time) as earliest latest(_time) as latest by ja3, ja3s, src_ip, server_name 

| eval maxlatest=now() 

| eval isOutlier=if(earliest >= relative_time(maxlatest, "-1d@d"), 1, 0) 

| table ja3, ja3s, src_ip, server_name, earliest, latest, maxlatest, isOutlier 

| convert ctime(earliest) ctime(latest) ctime(maxlatest) 

| sort earliest desc

7. https://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalydetection.

8. https://docs.splunk.com/Documentation/Splunk/8.2.2/Knowledge/Aboutlookupsandfieldactions

9. https://www.splunk.com/en_us/resources/search-processing-language.html

10. https://github.com/mlaferrera/SEC1745

11. https://github.com/mlaferrera/SEC1745/queries/firstseen.txt



5Detecting Supply Chain Attacks

WHITE PAPER

Rarest12

Identifying the least frequently occurring JA3s hash by server_name had limited utility without defining an allow 

list. In some cases, the known malicious hosts were found in the top 20 results; however, this was not always the 

case. The results were highly temporal, causing inconsistent findings based on the time frame chosen for the 

query. Time windows that are either too long or too short for analysis may return skewed results, depending on the 

frequency and duration of malicious connections. As such, this query is perhaps more useful as an addendum to 

other methods outlined in this research. 

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| eventstats count as total 

| stats values(ja3), values(dest_ip), values(src_ip) values(total) as total count by server_name 

ja3s 

| eval perc=round((count/total)*100,4) 

| sort + perc

Anomaly Detection13 
After seeing initial success with “first seen” and “rarest” query methods, our research focused on using histogram 

function for anomalydetection. This Splunk native command helps to identify anomalous events in our data. It will 

compute a probability for each event in the results and then identify events with an unusually small probability. It can 

be useful for identifying abnormal events within the time window for a query. One thing to note is that even malicious 

events can seem like benign activity if the frequency of the events is similar to legitimate traffic. 

In our testing, modifying the probability threshold (pthresh) was required for fine-tuning the results and limiting 

benign results. The maximum effective pthresh value in our experiments was 0.001. However, this will most likely 

need to be adjusted based on the amount of data collected and the desired sensitivity to anomalous events. 

Leveraging the anomalydetection command proved to be highly effective at identifying malicious abnormal activity 

over a 24 to 48 hour period. Periods longer than this reduced the effectiveness of the query. In experiments of smaller 

networks with a single /24 netblock, the known malicious activity was consistently identified without an allow list in 

the top 30 events. However, in networks with multiple or more extensive netblocks, this was not the case. Though it 

12. https://github.com/mlaferrera/SEC1745/queries/rarest.txt.

13. https://github.com/mlaferrera/SEC1745/queries/anomalydetection.txt



6Detecting Supply Chain Attacks

WHITE PAPER

did identify known malicious activity, they were not consistently in the top 30 events. An allow list of benign hosts was 

beneficial in this scenario, ultimately identifying malicious anomalous activity within the top 30 events.

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| anomalydetection method=histogram action=annotate pthresh=0.0001 src_ip, ja3, ja3s 

| stats sparkline max(log_event_prob) AS "Max Prob", min(log_event_prob) AS "Min Prob", 

values(probable_cause) AS "Probable Causes", values(dest_ip) AS "Dest IPs", values(server_name) 

AS "Server Names", values(ja3) AS "JA3", values(src_ip) as "Source IPs" count by ja3s 

| table "Server Names", "Probable Causes", "Max Prob", "Min Prob", "Dest IPs", ja3s, "JA3", 

"Source IPs", count 

| sort "Min Prob" asc

Anomaly Detection via Lookups14,15,16

Our research also focused on replicating the anomalydetection command in SPL and storing the results in a 

lookup table for better scalability. In this query, we calculate a similar frequency likelihood of the event's src_ip, 

ja3, and ja3s tuple, then store our results in a lookup table CSV via the outputlookup command.

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| eval id=md5(src_ip+ja3+ja3s) 

| stats count by id,ja3,ja3s,src_ip 

| eventstats sum(count) as total_host_count by src_ip,ja3 

| eval hash_pair_likelihood=exact(count/total_host_count) 

| sort src_ip ja3 hash_pair_likelihood 

| streamstats sum(hash_pair_likelihood) as cumulative_likelihood by src_ip,ja3 

14. https://github.com/mlaferrera/SEC1745/queries/outputlookup.txt

15. https://github.com/mlaferrera/SEC1745/queries/inputlookup.txt

16. https://github.com/mlaferrera/SEC1745/queries/outputlookup-update.txt



7Detecting Supply Chain Attacks

WHITE PAPER

| eval log_cumulative_like=log(cumulative_likelihood) 

| eval log_hash_pair_like=log(hash_pair_likelihood) 

| outputlookup hash_count_by_host_baselines.csv

Once the lookup table is generated, another query can be run with the lookup command to identify anomalous 

activity. Ideally, the query that produces the outputlookup should be run over a period outside the secondary 

query's bounds with the lookup command. Our testing focused on generating an outputlookup over the previous 

seven days' worth of data, then querying for anomalous events from up to the last 48 hours.

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| eval id=md5(src_ip+ja3+ja3s) 

| lookup hash_count_by_host_baselines.csv id as id OUTPUT count, total_host_count,log_cumula-

tive_like, log_hash_pair_like 

| table _time, src_ip, ja3s, server_name, subject, issuer, dest_ip, ja3, log_cumulative_like, log_

hash_pair_like, count, total_host_count 

| sort log_hash_pair_like



8Detecting Supply Chain Attacks

WHITE PAPER

Lastly, to ensure the probabilities are always up-to-date, we must run an additional query to ensure the latest 

information is in the lookup table. This can be done by simply modifying the original outputlookup query with a few 

different methods. For example, the initial outputlookup query should have a time window of the previous seven 

days, and this update query should run every 24 hours during the last 24 hours' worth of data. We will append the 

content from the previous query and restrict the time window to start when the last one is completed.

sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24) 

| eval id=md5(src_ip+ja3+ja3s) 

| stats count by id,ja3,ja3s,src_ip 

| append  

    [| inputlookup hash_count_by_host_baselines.csv] 

| stats sum(count) as count by id,ja3,ja3s,src_ip 

| eventstats sum(count) as total_host_count by src_ip,ja3 

| eval hash_pair_likelihood=exact(count/total_host_count) 

| sort src_ip ja3 hash_pair_likelihood 

| streamstats sum(hash_pair_likelihood) as cumulative_likelihood by src_ip,ja3 

| eval log_cumulative_like=log(cumulative_likelihood) 

| eval log_hash_pair_like=log(hash_pair_likelihood) 

| outputlookup hash_count_by_host_baselines.csv

Results from this methodology proved to be of similar effectiveness and an equivalent amount of time for the queries 

to complete when compared to using the anomalydetection command. However, in general, day-to-day usage, 

testing indicates that it is approximately 100x faster when compared with the secondary lookup query. An allow list 

was also a necessity when tested with more extensive networks. With an allow list, the known malicious anomalous 

activity was consistently identified within the top 30 events.

JA3s with Sysmon17,18

As always, network data combined with local process executions is a very valuable data source for threat hunters. 

If collecting Sysmon19 data within Splunk, it is possible to identify the processes communicating outbound and 

correlate them with their JA3/s hashes. This will allow for correlating Windows processes with JA3/s hashes along 

with the server_name. For instance, we will be able to identify a powershell.exe process connecting to an external 

host. In order to collect the relevant data, Sysmon must be configured to collect network connection initiated 

(EventCode 3) events. Olaf Hartong20 has written and open-sourced a utility to modularly configure Sysmon, which 

may be the easiest way to collect the required data quickly.

After reviewing the problem, we devised two approaches to correlate JA3s with Sysmon. The first method, shown 

below, is searching across Sysmon and JA3/network data but is not using the more efficient Splunk datamodel21.

(source="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" EventCode=3 src_ip IN 

(192.168.70.0/24)) 

 OR 

(sourcetype="bro:ssl:json" ja3=* ja3s=*) 

| eval src_ip=if(sourcetype == "bro:ssl:json",'id.orig_h','src_ip') 

| eval src_port=if(sourcetype == "bro:ssl:json",'id.orig_p','src_port') 

| eval dest_ip=if(sourcetype == "bro:ssl:json",'id.resp_h','dest_ip') 

17. https://github.com/mlaferrera/SEC1745/queries/Sysmon-simple.txt

18. https://github.com/mlaferrera/SEC1745/queries/Sysmon-multisearch.txt

19. https://docs.microsoft.com/en-us/sysinternals/downloads/Sysmon

20. https://github.com/olafhartong/Sysmon-modular

21. https://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Aboutdatamodels



9Detecting Supply Chain Attacks

WHITE PAPER

| eval dest_port=if(sourcetype == "bro:ssl:json",'id.resp_p','dest_port') 

| stats values(ja3) as ja3 values(ja3s) as ja3s values(process_path) as process_path 

values(server_name) as server_name by src_ip dest_ip dest_port 

| search ja3=* ja3s=* process_path=* NOT process_path IN ("&lt;unknown process&gt;")

The second method is more performant and designed for use with datamodels. Both will return identical results. 

However, in our testing, the query leveraging datamodels was approximately 4x faster than the one without.

| multisearch 

 [ from datamodel:Network_Traffic.All_Traffic 

 | search sourcetype="xmlwineventlog" source="XmlWinEventLog:Microsoft-Windows-Sysmon/

Operational" src_ip IN (192.168.70.0/24) 

 | rename app as process_path] 

 [ search sourcetype="bro:ssl:json" ja3=* ja3s=*] 

| eval src_ip=if(sourcetype == "bro:ssl:json",'id.orig_h','src_ip') 

| eval src_port=if(sourcetype == "bro:ssl:json",'id.orig_p','src_port') 

| eval dest_ip=if(sourcetype == "bro:ssl:json",'id.resp_h','dest_ip') 

| eval dest_port=if(sourcetype == "bro:ssl:json",'id.resp_p','dest_port') 

| stats count values(ja3) as ja3 values(ja3s) as ja3s values(process_path) as process_path, 

values(server_name) as server_name by src_ip dest_ip dest_port 

| search ja3=* ja3s=* process_path=* NOT process_path IN ("&lt;unknown process&gt;")



WHITE PAPER

21-21294-Splunk-Detecting Supply Chain Attacks-101-WP

www.splunk.comLearn more: www.splunk.com/asksales

Splunk, Splunk>, Data-to-Everything, D2E and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and 
other countries. All other brand names, product names or trademarks belong to their respective owners. © 2021 Splunk Inc. All rights reserved.

Depending on the environment, these queries may only be 

useful for triaging potential malicious activity rather than 

identifying anomalous activity. The most advantageous 

use case in our testing was using a previously identified 

method to identify possible malicious abnormal activity, 

then triage the event using the JA3s with Sysmon query. 

However, because the server_name is also included 

where it is available, it may be helpful to identify abnormal 

or suspicious activity manually.

Conclusion
Detecting anomalous malicious activity with JA3/s 

is by no means a perfect method. Some limitations 

and caveats must be taken into account. However, 

suppose an organization can accommodate data 

collection and analytics around these limitations. Then, 

the methodologies discussed here could help detect 

malicious activity that may not have been seen otherwise.

Due to how JA3/s hashes are generated, there are 

issues with using it to identify malicious activity with a 

high degree of confidence. However, using it to detect 

abnormal activity on a highly restricted and critical 

network segment or hosts can increase the level of 

confidence that could be cause for further investigation. 

Throughout our research, we sought to identify novel 

yet straightforward methods for leveraging data 

commonly found in network sensor datasets. There are 

undoubtedly other methods that could be developed to 

better leverage SSL/TLS fingerprinting techniques. We 

hope that this research allows organizations a better 

understanding of what is within the realm of possibility 

and inspires others to take these findings and explore 

additional avenues of research. Furthermore, we believe 

that the best way to experience this research is by trying 

it yourself. We have packed and hosted the data in an 

interactive Splunk workshop at https://bots.splunk.com.

Sign up for SURGe alerts.

Key Takeaways
We’ve explored several methodologies for identifying 

potential abnormal SSL/TLS communications using 

multiple Splunk commands and queries. In the end, 

numerous variables will determine how successful these 

queries are in your environments. Each query will almost 

certainly require some fine-tuning or modifications to 

work optimally. None of these methodologies would 

be useful against servers/hosts that generate large 

volumes of SSL/TLS events. All queries have been 

developed to be limited to only those hosts or netblocks 

of high criticality and do not generate large volumes of 

outbound client-side connections. 

In many environments, the anomalydetection 

command will provide valuable results but may also be 

limited due to scaling considerations. In those cases, the 

Anomaly detection methodology utilizing lookups may 

prove to be the most relevant and efficient. Additionally, 

generating allow lists of approved certificates, domains, 

and/or JA3/s hashes will be essential to limiting the 

number of benign results and increasing the likelihood of 

detecting truly anomalous and malicious activity. 

Special thanks
We want to take a moment to thank all of the individuals 

that helped in a multitude of ways throughout our 

research. From helping to identify potential techniques, 

helping to build and troubleshoot queries, building 

test infrastructure, explaining data science concepts 

and terminology, to just being a sounding board for 

ideas and concepts, and spending hours on video chat 

proving (and disproving) our assumptions.

• Josh Cowling

• Lily Lee

• Phillip Drieger

• Shannon Davis

• Dave Herrald

• Drew Church

• John Stoner

• Johan Bjerke

• John Lankau

• Nick Driver

• Drew Hunt

• Chris Morris

https://www.splunk.com
https://www.splunk.com/en_us/talk-to-sales.html?expertCode=sales
https://bots.splunk.com
https://www.splunk.com/en_us/form/surge-alerts.html

